광회절 측정에 있어서 Mie theory 의 적용은 아래의 범주내의 구형입자에 적합하다.:
불투명 입자 |
2 micron이하가 90%인 경우에 적용. |
투명 입자 | 200 micron이하가 90%인 경우에 적용. |
Mie 이론의 적용시 비구형입자, 혼합성분에는 적합하지 않고, 반드시 입자의 굴절율을 알아야 한다.
sensors: |
HELOS family | MYTOS family |
measuring ranges: | all measuring ranges | all particle sizes |
range of relative complex refractive index | refraction coefficient 0.1 <= n <= 5.0 |
absorption coefficient 0.0; 1E-5<= k <= 8.0 |
evaluation: | MIEE | Mie Extended Evaluation Mode |
The basis for applying the Mie theory is the publication by G. Mie[2] in 1908, in which an exact solution of Maxwell's equations was formulated for scattering of electromagnetic waves by spherical particles. This solution is known as the Mie theory. A detailed description is presented in [3].
For the application of Mie theory, the complex refractive index, n of the particles and the refractive index nm of the (non-absorbing) fluid must be known.
The complex refractive indes ist defined by: |
n = np - i * kp |
The relative complex refractive index is defined by: |
m =n/nm |
where |
|
np |
the refractive index of the particle, describes reflection and refraction, |
nm |
the refractive index of the fluid, |
kp |
the absorption coefficien of the particle, describes the absorption, |
i |
the imaginary unity. |
WINDOX 5 |
소개 |
개요 |
기술사양 |
측정기 제어 |
출력결과물 |
Server Administration |
선택사항 |
Data Visualisation Program |
QT Module |
Mie Module |
Revalidation Module |
KSIGMA Module |
QX2 |
개요 |
기술사양 |
Process Add-on |
관련정보 |
간행물 및 논문 |